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We investigate the superconductivity in a two-band model by using the renormalization
group approach. We discuss the superconducting gap function in the two-band model.

1. Theoretical Background

The concept of two-band superconductivity has been introduced, and the possibility

of the superconductivity has been discussed by many groups.1–3 Konsin and his

coworkers have studied superconducting properties of cooper oxides by using a two-

band model.4,5 Recently, we have developed the two-band model to more general

formalism.6–8 When Fermi energy level crosses two bands, we consider two Cooper

pairs at their Fermi momentum. If the Cooper pair tunnel between their regions

as a coupled state, the tunneling more stabilizes the order of Cooper pair than

that of a single band model.9–12 Very recently, Kondo has also presented a theory

for multi-band superconductivity.13,14 In this study, we present a simple model for

two-band superconductivity by using a renormalization group approach and discuss

two gap functions in relation to more general model.

In this section, we briefly summarize a two-band model for the superconductivity

and introduce a renormalization group approach.15–17
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We consider a Hamiltonian for two bands i and j written as

H = H0 + Hint , (1)

where

H0 =
∑

k,σ

[

[εi(k) − µ] a†
ikσaikσ + [εj(k) − µ] a†

jkσajkσ

]

, (2)

Hint =
1

4

∑

δ(p
1
+p

2
,p

3
+p

4
)

∑

α,β,γ,δ

[gi1(δαδδβγ − δαγδβδ)a
†
ip

1
αa†

ip
2
βaip

3
γaip

4
δ

+ gj1(δαδδβγ − δαγδβδ)a
†
jp

1
αa†

jp
2
βajp

3
γajp

4
δ

+ g2(δαδδβγ − δαγδβδ)a
†
ip

1
αa†

ip
2
βajp

3
γajp

4
δ

+ g2(δαδδβγ − δαγδβδ)a
†
jp

1
αa†

jp
2
βaip

3
γaip

4
δ] , (3)

where a†
ipσ(aipσ) is the creation (annihilation) operator corresponding to the exci-

tation of electrons (or holes) in ith band with spin σ and momentum p. µ is the

chemical potential. gi1 and gj1 represent the ith and jth intraband two-particle

normal scattering processes, respectively. g2 indicates the intraband two-particle

umklapp scattering.

2. Renormalization Group Approach

The Dyson equation is invariant under a multiple renormalization of Green’s func-

tion and coupling parameters g. From this invariance for a scaling procedure, we

obtain differential equations for the coupling parameters and the external vertex of

Cooper pair:

y
∂

∂y
g̃i(y, u, g) =

∂

∂ξ
g̃i(ξ, u/y, g̃(t, u, g))|ξ=1 , (4)

y
∂

∂y
ln Λ(y, u, g) =

∂

∂ξ
ln Λ(ξ, u/y, g̃(t, u, g))|ξ=1 , (5)

where y and u are parameters with the dimension of energy. g means the set of

original coupling, and Λ is the external vertex.

To solve Eqs. (4) and (5), we estimate the right-hand side of Eq. (4) by using

the perturbation theory. When we consider the lowest order correction to the vertex

for Cooper pair, we obtain
(

g̃i1

g̃j1

)

=

(

gi1

gj1

)

+

(

−g2
i1 −g2

2

−g2
2 −g2

j1

)(

Li

Lj

)

, (6)

(

g̃2

g̃2

)

=

(

g2

g2

)

+

(

−gi1g2 −g2gj1

−g2gi1 −gj1g2

)(

Li

Lj

)

, (7)
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where Li and Lj correspond to the polarization function for each intraband. When

εi(k) = tik
2, and εj(k) = tjk

2, for the special case ω = 0, k = 0, the above functions

Li and Lj become

Li =
1

2π

√

ui/ξ −
√

ui/u′
i , (8)

Lj =
1

2π

√

uj/ξ −
√

uj/u′
j , (9)

where ui (uj) and u′
i (u′

j) are non-dimensional functions expressed by the chemical

potential, cut-off energy, the top energy of jth band, and the density of state for

ith (jth) band.

Next, we consider a first order response function for singlet Cooper pair. The

first order vertex function Λ for ith and jth bands can be written as
(

Λi

Λj

)

=

(

1

1

)

+

(

−gi1 −g2

−g2 −gj1

)(

Li

Lj

)

. (10)

For simplicity, here and hereafter we assume gi1 = gj1 = g1. From Eqs. (4), (6)

and (7), we obtain differential equations written as

∂

∂x
g̃1 = −(g̃2

1 + g̃2
2) , (11)

∂

∂x
g̃2 = −2g̃1g̃2 . (12)

In similar way, using Eqs. (5) and (10), we obtain differential equations written as

∂

∂x
ln Λ+ = −g̃1 − g̃2 , (13)

where Λ+ = (Λi + Λj)/2.

3. Results and Discussion

In the previous section, we have derived basic equations of Eqs. (11)–(13) to find

the low-temperature phases. For the special case of g2 = 0, we obtain an analytic

solution and find that the superconducting phase appears only when the intraband

interaction g1 is negative. In the case of the traditional superconductivity such as

BCS theory, it is necessary that effective electron-electron interaction is negative

(g1 < 0) for realizing superconductivity. The present result agrees with that of the

traditional theory for superconductivity expressed by one-band model. On the other

hand, for the case of g2 6= 0, we can find superconductivity in the case of g2 < −g1.

In the case gi1 6= gj1, after diagonalization of the matrix in the righthand side

of Eqs. (6), (7), and (10), the above equations of Eqs. (11)–(13) are rewitten. In

this case, we can consider the possibility of two gap functions and expect inter-

esting phase diagrams for two-band superconductivity. Superconductivity of MgB2

may be a candidate to treat along this scheme. Phase diagrams for CDW, SDW,
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singlet superconductivity derived from more general Hamiltonian will be presented

elsewhere.

In conclusion, we derive a renormalization equations for two-band supercon-

ductivity and discuss two gap functions in the two-band superconductivity. In the

framework of this model, the present results predict that it is impotant that g1 is

attractive for superconductivity.
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